МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" Химический институт им. А.М. Бутлерова

подписано электронно-цифровой подписью

Программа дисциплины

Физические методы исследования органических соединений

Направление подготовки: 04.04.01 - Химия

Профиль подготовки: Хемоинформатика и молекулярное моделирование

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2018

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО
- 2. Место дисциплины (модуля) в структуре ОПОП ВО
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)
- 4.2. Содержание дисциплины (модуля)
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 7. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины (модуля) к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья
- 13. Приложение №1. Фонд оценочных средств
- 14. Приложение №2. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 15. Приложение №3. Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Бурилов В.А. (Кафедра органической химии, Химический институт им. А.М. Бутлерова), Vladimir.Burilov@kpfu.ru; старший научный сотрудник, д.н. Катаева О.Н. (НИЛ Лаборатория синтетических физиологически активных веществ, Химический институт им. А.М. Бутлерова), Olga.Kataeva@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО

Обучающийся, освоивший дисциплину (модуль), должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1	Способен использовать полученные знания теоретических основ современной химии и смежных наук при решении профессиональных задач, в том числе с использование компьютерных технологий
ПК-2	Способен применять основные синтетические и аналитические методы получения и исследования химических веществ и реакций при решении профессиональных задач
ПК-3	способен анализировать новую научную проблематику, применять методы и средства планирования, организации и проведения научных исследований в выбранной области химии и смежных наук

Обучающийся, освоивший дисциплину (модуль):

Должен знать:

- 1)базовую терминологию, относящуюся к физико-химическим методам исследования,
- 2)классификацию методов;
- 3) основные понятия и законы, лежащие в основе различных методов.

Должен уметь:

- 1) продемонстрировать связь между различными физико-химическими методами исследования, структурой и свойствами веществ;
- 2) осуществить выбор соответствующего физико-химического метода исследования в зависимости от структуры вещества и поставленной задачи;
- 3) использовать закономерности физико-химических процессов и физико-химические методы исследования при выполнении курсовых и работ и интерпретации экспериментальных данных;
- 4) использовать полученные навыки работы для решения профессиональных и социальных задач;
- 5) применять соответствующие программные продукты для обработки данных.

Должен владеть:

Навыками решения задач установления структуры соединения по данным физических методов исследования молекул.

Должен демонстрировать способность и готовность:

решить любую проблему, связанную с установлением структуры соединения по данным физических методов исследования молекул.

2. Место дисциплины (модуля) в структуре ОПОП ВО

Данная дисциплина (модуль) включена в раздел "Б1.В.ДВ.04.01 Дисциплины (модули)" основной профессиональной образовательной программы 04.04.01 "Химия (Хемоинформатика и молекулярное моделирование)" и относится к дисциплинам по выбору. Осваивается на 1 курсе в 1 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) на 72 часа(ов).

Контактная работа - 22 часа(ов), в том числе лекции - 12 часа(ов), практические занятия - 10 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 50 часа(ов).

Контроль (зачёт / экзамен) - 0 часа(ов).

Форма промежуточного контроля дисциплины: зачет в 1 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)

N	Разделы дисциплины / модуля	Семестр	(в часах)			Самостоятельная работа
			Лекции	Практические занятия	Лабораторные работы	,
1.	Тема 1. Общая характеристика физических методов исследования веществ	1	8	0	0	8
2.	Тема 2. Метод ЯМР спектроскопии	1	2	3	0	12
3.	Тема 3. Хромато-масс спектрометрия.	1	0	3	0	10
4.	Тема 4. Метод ИК-спектроскопии	1	0	2	0	10
5.	Тема 5. Электронная спектроскопия в видимой и УФ областях, Эмисионная спектроскопия	1	2	2	0	10
	Итого		12	10	0	50

4.2 Содержание дисциплины (модуля)

Тема 1. Общая характеристика физических методов исследования веществ

Методы определения физических свойств. Прямая и обратная задачи. Общая характеристика и классификация методов. Спектроскопические, дифракционные, электрические и магнитные методы. Чувствительность и разрешающая способность метода. Характеристическое время метода. Интеграция методов. Законы поглощения электромагнитного излучения.

Тема 2. Метод ЯМР спектроскопии

Физические основы явления ядерного магнитного резонанса. Снятие вырождения спиновых состояний в постоянном магнитном поле. Условие ядерного магнитного резонанса. Заселенность уровней энергии, насыщение, релаксационные процессы и ширина сигнала. Химический сдвиг и спин-спиновое расщепление в спектрах ЯМР. Константа экранирования ядра. Относительный химический сдвиг, его определение и использование в химии. Спин-спиновое взаимодействие ядер, его природа, число компонент мультиплетов, распределение интенсивности, правило сумм. Анализ спектров ЯМР первого и не первого порядков. Применение спектров ЯМР в химии. Техника и методика эксперимента. Структурный анализ. Химическая поляризация ядер. Блок-схема спектрометра ЯМР. Характер образцов.

Методика эксперимента по регистрации спектра ЯМР. Практическая работа: "Установление структуры органического соединения по спектрам ЯМР 1H и 13С"

Тема 3. Хромато-масс спектрометрия.

Основы масс-спектрометрии. Методы ионизации: электронный удар, фотоионизация, электро-статическое неоднородное поле, химическая ионизация. Комбинированные методы. Ионный ток и сечение ионизации. Потенциалы появления ионов. Вертикальные и адиабатические электронные переходы. Диссоциативная ионизация. Типы ионов в масс-спектрометрах. Принципиальная схема масс-спектрометра Демпстера. Времяпролетный масс-спектрометр. Квадрупольный масс-спектрометр. Применение масс-спектрометрии. Идентификация вещества. Корреляция между молекулярной структурой и масс-спектрами. Хромато-масс спектрометрия как один из мощнейших инструментов для идентификации сложных органических смесей.

Практическая работа: "Разделение и качественное определение состава неизвестной органической смеси"

Тема 4. Метод ИК-спектроскопии

Описание колебательных спектров. Уровни энергии, их классификация, фундаментальные, обертонные и составные частоты. Интенсивность полос колебательных спектров. Правила отбора и интенсивность в ИК поглощении и в спектрах КР. Частоты и формы нормальных колебаний молекул. Применение методов колебательной спектроскопии для качественного и количественного анализов и другие применения в химии. Специфичность колебательных спектров. Техника и методики ИК спектроскопии Аппаратура ИК спектроскопии, приготовление образцов.

ИК-спектроскопия: методика проведения эксперимента. Практическая работа: "Идентификация соединений по инфракрасным спектрам в растворах. Влияние концентрации и природы растворителя"

Тема 5. Электронная спектроскопия в видимой и УФ областях, Эмисионная спектроскопия

Абсорбционная спектроскопия в видимой и УФ областях как метод исследования электронных спектров многоатомных молекул. Характеристики электронных состояний многоатомных молекул: энергия, волновые функции, мультиплетность, время жизни. Симметрия и номенклатура электронных состояний. Классификация и отнесение электронных переходов. Интенсивности полос различных переходов. Правила отбора и нарушения запрета. Применение электронных спектров поглощения в качественном, структурном и количественном анализах. О специфике электронных спектров поглощения различных классов соединений. Спектры сопряженных систем в электронных спектрах поглощения. Люминесценция (флуоресценция и фосфоресценция). Фотофизические процессы в молекуле. Основные характеристики люминесценции (спектры поглощения и спектры возбуждения, времена жизни возбужденных состояний, квантовый выход люминесценции). Закономерности люминесценции. Тушение люминесценции. Практическое использование количественного люминесцентного анализа.

Работа на спектрофотометре Shimadzu UV-3600. Практическая работа: "Определение концентрации неизвестного раствора. Изучение влияния ?полярности? среды на максимум поглощения бензойной кислоты". Порядок работы на спектрофлуориметре. Практическая работа: "Подбор оптимальной концентрации раствора для изучения фосфоресценции. Изучение влияния полярности растворителя на спектр люминесценции флуоренона-9. Запись спектра возбуждения флуоренона-9".

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301)

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"

Устав федерального государственного автономного образовательного учреждения "Казанский (Приволжский) федеральный университет"

Правила внутреннего распорядка федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет"

Локальные нормативные акты Казанского (Приволжского) федерального университета

6. Фонд оценочных средств по дисциплине (модулю)

Фонд оценочных средств по дисциплине (модулю) включает оценочные материалы, направленные на проверку освоения компетенций, в том числе знаний, умений и навыков. Фонд оценочных средств включает оценочные средства текущего контроля и оценочные средства промежуточной аттестации.

В фонде оценочных средств содержится следующая информация:

- соответствие компетенций планируемым результатам обучения по дисциплине (модулю);
- критерии оценивания сформированности компетенций;
- механизм формирования оценки по дисциплине (модулю);
- описание порядка применения и процедуры оценивания для каждого оценочного средства;
- критерии оценивания для каждого оценочного средства;
- содержание оценочных средств, включая требования, предъявляемые к действиям обучающихся, демонстрируемым результатам, задания различных типов.

Фонд оценочных средств по дисциплине находится в Приложении 1 к программе дисциплины (модулю).

7. Перечень литературы, необходимой для освоения дисциплины (модуля)

Освоение дисциплины (модуля) предполагает изучение основной и дополнительной учебной литературы. Литература может быть доступна обучающимся в одном из двух вариантов (либо в обоих из них):

- в электронном виде - через электронные библиотечные системы на основании заключенных КФУ договоров с правообладателями;

- в печатном виде - в Научной библиотеке им. Н.И. Лобачевского. Обучающиеся получают учебную литературу на абонементе по читательским билетам в соответствии с правилами пользования Научной библиотекой.

Электронные издания доступны дистанционно из любой точки при введении обучающимся своего логина и пароля от личного кабинета в системе "Электронный университет". При использовании печатных изданий библиотечный фонд должен быть укомплектован ими из расчета не менее 0,5 экземпляра (для обучающихся по ФГОС 3++ - не менее 0,25 экземпляра) каждого из изданий основной литературы и не менее 0,25 экземпляра дополнительной литературы на каждого обучающегося из числа лиц, одновременно осваивающих данную дисциплину.

Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля), находится в Приложении 2 к рабочей программе дисциплины. Он подлежит обновлению при изменении условий договоров КФУ с правообладателями электронных изданий и при изменении комплектования фондов Научной библиотеки КФУ.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

База данных масс-спектров - https://massbank.eu/MassBank/

База данных Национального института современной индустриальной науки и технологии, Япония. - https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

База данных Национального института стандартизации и технологии США по свойствам соединений. - https://webbook.nist.gov/chemistry/

База данных ЯМР-спектров - http://www.nmrdb.org/

Последние достижения в области спектральных методов - https://www.spectroscopynow.com/view/index.html?tzcheck=1

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Вид работ	Методические рекомендации				
лекции	В ходе лекционных занятий вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.				

Вид работ	Методические рекомендации
практические занятия	Заранее готовьтесь к семинарским занятиям исходя из программы дисциплины. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или на ближайшем занятии. Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам. Методические указания к лабораторным работам: 1. Лабораторные работы выполняются в соответствии с графиком лабораторных работ, который доводится до сведения обучающихся в начале каждого семестра. 2. К выполнению лабораторных работ допускаются обучающиеся, прошедшие инструктаж по правилам безопасности. 3. Каждый обучающийся должен заранее подготовиться к очередному занятию и явиться в лабораторию с тетрадью для ведения протокола исследований (черновиком). Неподготовленные студенты к работе не допускаются. 4. Обучающийся должен бережно обращаться со всем оборудованием лаборатории. 5. Во время занятий в лаборатории должен поддерживаться надлежащий порядок и деловая обстановка. Ответственность за поддержание порядка в лаборатории, кроме преподавателя, несет староста группы. 6. При выполнении лабораторных работ требуется неукоснительное выполнение правил техники безопасности. 7. По окончании работы каждый обучающийся в черновом протоколе должен получить пометку преподавателя о правильности результатов работы и разрешение на разборку схемы. В случае неправильного выполнения работы обучающийся повторно делает её, добиваясь положительных результатов. 8. К следующему занятию каждый обучающийся должен представить отчет о предыдущей выполненной работе по установленной форме (в отчете следует указать номер лабораторной работы, ее название, цели, задачи, кратко описать ход лабораторной работы, полученные результаты и выводы). 9. Пропущенные лабораторные работы отрабатываются во внеурочное время согласно установленному графику.
самостоя- тельная работа	Успешное освоение дисциплины предполагает активное, творческое участие студента путем планомерной, повседневной работы. Самостоятельная работа проводится с целью углубления знаний по дисциплине и предусматривает: - чтение студентами рекомендованной литературы и усвоение теоретического материала дисциплины; - подготовку к практическим и семинарским занятиям; - работу с Интернет-источниками; - подготовку к сдаче зачета. Планирование времени на самостоятельную работу, необходимого на изучение настоящей дисциплины, студентам лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала. Материал, пройденный на семинарских занятиях, необходимо регулярно дополнять сведениями из литературных источников, представленных в рабочей программе дисциплины 'Физические методы исследования органических соединений'. По каждой из тем для самостоятельного изучения, приведенных в рабочей программе дисциплины следует сначала прочитать рекомендованную литературу и при необходимости составить краткий конспект основных положений, терминов, сведений, требующих запоминания и являющихся основополагающими в этой теме и для освоения последующих разделов курса.
зачет	Подготовка к зачету способствует закреплению, углублению и обобщению знаний, получаемых, в процессе обучения, а также применению их к решению практических задач. Готовясь к зачету, студент ликвидирует имеющиеся пробелы в знаниях, углубляет, систематизирует и упорядочивает свои знания. На зачете студент демонстрирует то, что он приобрел в процессе обучения по конкретной учебной дисциплине. При подготовке к зачету необходимо ознакомится списком вопросов к зачету, повторно ознакомится с лекционным материалом, систематизировать информацию по курсу. Особое внимание следует уделить разделам курса, изученным самостоятельно и вызывавшим наибольшие затруднение при теоретическом изучении и решении практических задач.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем, представлен в Приложении 3 к рабочей программе дисциплины (модуля).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Материально-техническое обеспечение образовательного процесса по дисциплине (модулю) включает в себя следующие компоненты:

Помещения для самостоятельной работы обучающихся, укомплектованные специализированной мебелью (столы и стулья) и оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду КФУ.

Учебные аудитории для контактной работы с преподавателем, укомплектованные специализированной мебелью (столы и стулья).

Компьютер и принтер для распечатки раздаточных материалов.

Мультимедийная аудитория.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий:
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут:
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 04.04.01 "Химия" и магистерской программе "Хемоинформатика и молекулярное моделирование".

Приложение 2 к рабочей программе дисциплины (модуля) Б1.В.ДВ.04.01 Физические методы исследования органических соединений

Перечень литературы, необходимой для освоения дисциплины (модуля)

Направление подготовки: 04.04.01 - Химия

Профиль подготовки: Хемоинформатика и молекулярное моделирование

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2018

Основная литература:

- 1. Физические методы исследования в химии: Учебное пособие / Луков В.В., Щербаков И.Н. Рн/Д:Южный федеральный университет, 2016. 216 с.: ISBN 978-5-9275-2023-7 Режим доступа: http://znanium.com/catalog/product/991794
- 2. Ядерный магнитный резонанс. Теория и практика. В 3 ч. Ч. 2: Учебное пособие / Бельская Н.П., Ельцов О.С., 2-е изд., стер. М.:Флинта, 2018. 124 с.: ISBN 978-5-9765-3557-2 Режим доступа: http://znanium.com/catalog/product/966424
- 3. Физические основы теории оптической и рентгеновской спектроскопии: Учебное пособие / Пивоваров С.С. СПб:СПбГУ, 2016. 64 с.: ISBN 978-5-288-05653-6 Режим доступа: http://znanium.com/catalog/product/941494

Дополнительная литература:

- 1. Федотов, М.А. Ядерный магнитный резонанс в неорганической и координационной химии. Растворы и жидкости [Электронный ресурс] : монография / М.А. Федотов. Электрон. дан. Москва : Физматлит, 2010. 384 с. Режим доступа: https://e.lanbook.com/book/2151
- 2. Каратаева, Ф.Х. Спектроскопия ЯМР в органической химии. Часть 1. Общая теория ЯМР. Химические сдвиги 1H и 13С [Электронный ресурс]/ Ф.Х.Каратаева, В.В.Клочков. Казань: Издательство Казанского университета, 2013. 132 с. URL: http://repository.kpfu.ru/?p id=68614
- 3. Спектральные методы анализа. Практическое руководство [Электронный ресурс] : учебное пособие / В.И. Васильева [и др.] ; под ред. В.Ф. Селеменева, В.Н. Семенова. Электрон. дан. Санкт-Петербург : Лань, 2014. 416 с. Режим доступа: https://e.lanbook.com/book/50168
- 4. Основы молекулярной спектроскопии: спектры оптического поглощения и люминесценции, применение в изучении полиоксометаллатных нанокластеров: Учебное пособие / Гржегоржевский К.В., Остроушко А.А., 2-е изд., стер. М.:Флинта, Изд-во Урал. ун-та, 2017. 210 с. ISBN 978-5-9765-3083-6 Режим доступа: http://znanium.com/catalog/product/947274

Приложение 3 к рабочей программе дисциплины (модуля) Б1.В.ДВ.04.01 Физические методы исследования органических соединений

Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Направление подготовки: 04.04.01 - Химия

Профиль подготовки: Хемоинформатика и молекулярное моделирование

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2018

Освоение дисциплины (модуля) предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows 7 Профессиональная или Windows XP (Volume License)

Пакет офисного программного обеспечения Microsoft Office 365 или Microsoft Office Professional plus 2010

Браузер Mozilla Firefox Браузер Google Chrome

Adobe Reader XI или Adobe Acrobat Reader DC

Kaspersky Endpoint Security для Windows

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен обучающимся. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, учебно-методические комплексы, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен обучающимся. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

